Koluśka

Najpierw narysowałem trójkąt równoboczny. Następnie wpisałem weń okrąg. A potem zaroiło się od okręgów. Kolejne były coraz mniejsze – wciśnięte w każdy róg trójkąta, styczne do ramion kąta i okręgu oczko większego. Teoretycznie ciąg małych kółeczek mógłby być kontynuowany w nieskończoność. Przypomina to słynne paradoksy Zenona, czyli bezskuteczną pogoń Achillesa za żółwiem lub strzałę nieustannie zmierzającą do celu. Próbowałem rysować te kółeczka dotąd, aż grubość okręgu zrównała się z jego promieniem, czyli kółeczko stało się kropką. Całość skojarzyła mi się z najprostszymi fraktalami. W końcu postanowiłem wrócić do geometrii.

Obliczenie, jaką część powierzchni trójkąta równobocznego stanowi powierzchnia wpisanego weń okręgu, a właściwie koła – to standard. Wynik jest liczbą niewymierną. Natomiast stosunek powierzchni zajętej przez wszystkie nieskończenie liczne różowe kółka do powierzchni zielonego giganta to liczba wymierna. Jaka?